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The neocortex is a multi-scale network, with intricate local

circuitry interwoven into a global mesh of long-range

connections. Neural activity propagates within this network on

a wide range of temporal and spatial scales. At the micro scale,

neurophysiological recordings reveal coordinated dynamics in

local neural populations, which support behaviorally relevant

computations. At the macro scale, neuroimaging modalities

measure global activity fluctuations organized into

spatiotemporal patterns across the entire brain. Here we review

recent advances linking the local and global scales of cortical

dynamics and their relationship to behavior. We argue that

diverse experimental observations on the dimensionality and

variability of neural activity can be reconciled by considering

how activity propagates in space and time on multiple spatial

scales.
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Introduction
Behavior is driven by changes of neural activity through-

out the brain. But even in the absence of behavior, the

brain spontaneously generates massive tides of neural

activity, which can be as large as the activity produced

by external stimuli. Spontaneous activity (see Box 1) is

present at all times and on all spatial scales — from single

neurons to brain-wide networks — interacting with sen-

sory inputs and affecting motor outputs. Due to varying

patterns of ongoing activity, responses to identical stimuli

are highly variable from trial to trial (see Box 1). Tradi-

tional computational theories dismiss ongoing activity as a

nuisance, assuming that neural activity is composed of
www.sciencedirect.com 
task-related ‘signals’ mixed with a random ‘noise’ (see

Box 1). Accordingly, the signals can be recovered by

averaging activity data over trials, and the brain could

likewise overcome the noise by appropriate averaging

over neural populations [1,2]. However, evidence is accu-

mulating that ongoing activity is not debilitating noise,

but well-orchestrated dynamics with distinct, reproduc-

ible structure both within local microcircuits and across

the whole brain. A theory of how these dynamics contrib-

ute, if at all, to perception, decisions, and actions, is only

beginning to emerge.

The structure of spontaneous cortical activity is conven-

tionally quantified by pairwise correlations [3] (see Box 1,

but other methods have been used as well [4,5], including

time-dependent correlations [6]). At the local scale of a

cortical microcircuit, correlations have been computed

between fluctuations of spiking activity in pairs of simul-

taneously recorded neurons, termed noise correlations

[7,8]. At the global scale of the entire cortex, correlations

have been computed between spontaneous activity in

pairs of distant cortical regions recorded with functional

magnetic resonance imaging (fMRI), electroencephalog-

raphy (EEG) or magnetoencephalography (MEG) in the

absence of a stimulus or a task, a measure known as the

resting-state functional connectivity [9,10]. Such zero-lag

correlations only reveal precise synchrony, in which fluc-

tuations of neurons or distant cortical regions are aligned

in time.

With recent advances in recording technologies and data

analysis methods, we are now beginning to increasingly

appreciate that cortical activity is structured both in space

and time, propagating through cortical networks as spa-

tiotemporal waves [11,12,13�,14,15]. Propagating waves

are commonly observed on multiple spatial and temporal

scales and across different experimental setups. Spatio-

temporal waves bind distant nodes within a network:

activity of two nodes with a small zero-lag correlation

can have a tight relationship at a non-zero lag, correspond-

ing to wave propagation. Thus, understanding cortical

activity will require a theory that accounts for the spatio-

temporal nature of cortical dynamics. In this review, we

survey new experimental techniques, data analysis meth-

ods, and models that enable us to understand the struc-

ture of spatiotemporal cortical activity on different scales,

and moreover, to link this structure across scales. We

argue that such links have allowed the field to make

progress on classic problems understanding response

dimensionality and trial-to-trial variability. We also
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Box 1 Neural variability and dimensionality definitions.

Variability: seemingly stochastic differences in neural responses

under precisely controlled experimental conditions, for example,

differences in response to repeated presentations of the exact same

sensory stimulus. Neural response variability can be in part attributed

to activity driven by spontaneous, task unrelated behaviors (e.g.

spontaneous movements), to uncontrolled changes of behavioral

states (e.g. arousal, motivation), and to internal network dynamics.

Spontaneous activity: ongoing activity in the brain, which is not

directly driven by sensory stimuli or overt behaviors. Spontaneous

activity is most frequently studied in the absence of overt behavior (e.

g. during rest, quiet wakefulness, or sleep). However, spontaneous

activity, not driven by any apparent external causes, is also present

during sensory stimulation and behavioral tasks and thus contributes

to neural response variability.

Noise: a variable component of neural response that is considered to

be task irrelevant, not carrying meaningful signals, but merely

obscuring neural representations and deteriorating computations.

Pairwise (noise) correlation: Pearson correlation between activity

fluctuations of two simultaneously recorded units (e.g. neurons,

pixels, voxels) across repeated trials under the same experimental

conditions. Noise correlation reflects not only random noise, but also

other sources of variability, such as spontaneous movements,

behavioral state changes, or cognitive factors such as learning and

attention.

Principal components: a set of linearly uncorrelated variables

obtained from the original, possibly correlated variables via an

orthogonal transformation, such that the first principal component

accounts for as much variability in the data as possible, and each

succeeding component in turn accounts for as much variance as

possible under the constraint that it is orthogonal to the preceding

components. Principal components can be found by eigendecom-

position of the data covariance matrix, where the eigenvalues indi-

cate the proportion of variance accounted for by each principal

component.

Linear dimensionality: the number of principal components

required to account for a fixed proportion of variance in the data.

For low-dimensional data, the variance is concentrated in the first

few principal components with the largest eigenvalues.  For high-

dimensional data, the variance is distributed across many prin-

cipal components with the eigenvalues of similar magnitude.

Intuitively, the dimensionality corresponds to the extent of the

linear subspace occupied by the data, or the number of separate

patterns exhibited by the data.
speculate about computational functions of spatiotempo-

ral activity.

Dynamics on the local scale
On the local scale of a cortical microcircuit, the activity of

many neurons can be recorded simultaneously using

multi-electrode arrays [16] or optical imaging techniques

[17]. These methods sample activity from local neural

populations within spatial regions that are typically smal-

ler than a cortical area. The widespread availability of

neural population recordings has recently facilitated our

understanding of how spontaneous activity fluctuations,

measured with pairwise correlations, are distributed over

neural populations.
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In many studies, the activity fluctuations shared among

neurons within a local population were found to be low-

dimensional [18–22], meaning that only few activity

patterns across neurons dominate population responses

over time (Figure 1a). The low dimension of population

activity is manifested in a rapidly decaying eigenvalue

spectrum of the noise-correlation matrix, with only the

first few eigenvalues set apart from zero (Figure 1b–d). In

agreement with these observations, one-dimensional

bulk measures such as local field potentials [23] or

summed population firing rates [20,24] predict well a

majority of pairwise noise correlations in local popula-

tions. Moreover, changes of behavioral and cognitive

states, such as arousal, task engagement, and attention,

appear to primarily modulate the shared, low-dimensional

component of the population-wide fluctuations, without

much effect on the uncorrelated fluctuations of single

neurons [22,25��]. The picture of low-dimensional fluc-

tuations was recently challenged by an experiment in

which �10,000 neurons from approximately 1 mm2 of

mouse visual cortex were recorded simultaneously using

two-photon calcium imaging [26��]. Within this large

population, activity fluctuations were found to be high-

dimensional, comprising at least 100 linear dimensions.

The puzzling differences in reported dimensionality of

local activity fluctuations may be reconciled by consider-

ing how it is related to spatiotemporal dynamics in the

local network. In a network model with spatially struc-

tured connectivity — mimicking local connectivity in the

cortex — spontaneous fluctuations form spatial clusters

that propagate laterally as local irregular waves (Figure 2a)

[27]. The typical cluster size depends on the spatial

connectivity structure and neural excitability. If a neural

population is sampled from a local region that is smaller

than a typical cluster size, then most sampled neurons will

equally participate in each wave passing through this

region, simultaneously increasing and decreasing their

activity. As a result, fluctuations of this population will

be low-dimensional (Figure 2b,c). If, however, a neural

population is sampled from a region that is larger than a

typical cluster size, then different sampled neurons will

participate in different local waves passing through

remote parts of the network at different times, hence

fluctuations will be high-dimensional (Figure 2b,c). This

analysis predicts that fluctuations in a population of

tightly interconnected neurons (such as within a cortical

column) should be very low-dimensional. Indeed, in

spiking activity recorded from all layers of single columns

in the primate visual cortex, fluctuations are virtually one-

dimensional: a column spontaneously transitions between

phases of high and low spiking activity nearly synchro-

nously across layers (Figure 2d,e) [25��,28]. Differences in

spatial distribution of measured neurons and in network

connectivity structure may therefore at least partially

explain diverse observations about dimensionality of cor-

tical activity.
www.sciencedirect.com
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Figure 1
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Dimensionality of population-wide fluctuations. (a) Responses of two simulated neural populations with low-dimensional (upper row) and high-

dimensional (lower row) fluctuations on four example trials (different trials are offset vertically). Blue-to-green color code indicates projection of each

trial on the first principal component (see Box 1) of the data correlation matrix. Neurons are sorted left-to-right by their activity on the first trial (blue).

Across trials, low-dimensional population exhibits only a scaled version of the same activity pattern. High-dimensional population exhibits many diverse

activity patterns. (b) Noise correlation (see Box 1) is a Pearson correlation coefficient between activities of a pair of neurons (i and j) in the population

across trials, under identical stimulus conditions (each dot is the pair’s activity on one trial). (c) Noise correlation matrix for all pairs in the population.

Neurons are sorted according to their projection weight on the first principal component. (d) Eigenvalue spectrum of the noise-correlation matrix

decays slowly for the high-dimensional population, but has only one eigenvalue set apart from zero for the low-dimensional population (see Box 1).
However, the spatial intermixing of topologically separate

networks and the dependence of dynamics on behavioral

state both complicate the picture. The spatial network

structure supporting wave propagation is not always
Figure 2

The spatial scale of network dynamics determines the dimensionality of cor

dimensional network model of rate-units with spatially structured connectivi

and low (blue) firing-rates clustered in space. The activity spreads through t

on the spatial connectivity strength and local excitability. (b) Activities of 62

large (red), medium (blue) and small (green) relative to the typical cluster siz

of the activity correlation matrix of units sampled on the large (red, left), me

dimensional on scales larger than the typical cluster size, and low-dimensio

transitions between periods of high (yellow) and low (blue) spiking activity re

with a 16-channel linear multi-electrode array (data from Ref. [25��]). One ex

matrix of units within a single column from panel (d). The single-column act

(e.g. global arousal), accompanied by changes in the level of neuromodulat

qualitative changes of spatiotemporal activity patterns in the network (witho

network model shifts from global synchronous waves (lower panel), to spira

neural adaptation currents are enhanced, mimicking the effect of rising ACh

the dimensionality of correlated fluctuations in the same group of neurons.
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aligned with anatomical dimensions of the cortex (depth

and lateral distance). For example, in the mouse visual

cortex, connectivity is stronger between cells with similar

orientation preference, which are mixed in the cortical
Current Opinion in Neurobiology

related fluctuations. (a) Spontaneous activity patterns in a two-

ty [27]. The network exhibits spatiotemporal activity with high (yellow)
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 level. Such shifts in spatiotemporal dynamics will produce changes in
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tissue as ‘salt and pepper’ (imagine shuffling the pixels in

Figure 2a). Therefore, a population sampled from a local

cortical region may correspond to sampling from distant

regions in the network rearranged according to the con-

nectivity structure and thus exhibit high-dimensional

fluctuations, such as in Ref. [26��]. Intriguingly, record-

ings made with large-scale Neuropixels electrode arrays

from �3000 neurons distributed across brain regions

showed similar dimensionality as the V1 populations,

suggesting that coordinated spatiotemporal dynamics

may extend far beyond local populations and even

beyond cortex [26��]. In addition, the spatial scale of

spontaneous waves can be altered by changes in neural

excitability due to variations in the level of neuromodu-

lators accompanying changes of behavioral states

(Figure 2f) [29]. Consequently, the dimensionality of

correlated fluctuations in the same neural population

may be modulated as a function of behavioral state. These

considerations suggest that although correlations provide

us a glimpse into organization of cortical activity, a full

understanding will require elucidating how spatiotempo-

ral activity propagation is related to network connectivity

and how it is modulated during changes of behavioral

states.

Dynamics on the global scale
On the whole-brain scale, the activity from many regions

can be recorded simultaneously with neuroimaging meth-

ods such as fMRI, EEG or MEG. fMRI provides com-

plete volumetric images (at �1 mm resolution), but

measures slow (�1 s) hemodynamic responses associated

with neural activity. EEG and MEG detect synchronized

neural activity with high temporal resolution (�1 ms) but

low spatial resolution (�1 cm). In these recordings, the

structure of the whole-brain spontaneous activity is tra-

ditionally examined with pairwise correlations between

brain regions, called functional connectivity. Functional

connectivity analyses reveal that resting-state fluctuations

are bilaterally symmetric and organized in multiple dis-

tributed networks of regions that activate and deactivate

together, called resting-state networks [9,10,30,31]. Rest-

ing-state networks closely correspond with the large-scale

anatomical connectivity of the human cortex [32]. More-

over, electrophysiological recordings in humans confirm

synchronous patterns of neural activity in distant, often

bilateral brain regions [33].

Recently, wide-field optical imaging methods enabled

direct measurements of neural activity across broad

regions of cortex at significantly higher spatial

(<100 mm) and temporal (�10 ms) resolution, and sub-

stantially enhanced signal-to-noise levels. Using large

preparations with voltage sensitive dyes (VSDs) [34] or

with transgenic expression of fluorescent voltage [35�,36]
or calcium sensors [37�,38–40,35�,41�,42��], a majority of

both hemispheres of the mouse cortex can be imaged at

once. The ability to observe the global cortical activity
Current Opinion in Neurobiology 2019, 58:181–190 
concurrently in space and time unveiled its striking

spatiotemporal organization: spontaneous activity con-

sists of bilaterally symmetric patterns that involve each

part of cortex and occur both during behavior [39,41�,42��]
and in the absence of overt behaviors (Figure 3a) [34].

Similar to the much slower resting state networks

observed with fMRI, the spatial organization of these

functional activity patterns are linked to known anatomi-

cal pathways [43�].

To what extent do distributed activity patterns in humans

and rodents have spatiotemporal dynamics? A recent

series of studies quantified the lead-lag relationships in

the activity of human brain regions in resting-state EEG

[45,46] or fMRI [47�,48,49]. These analyses revealed that

global activity travels slowly through the cerebral cortex

along multiple, stereotypical spatiotemporal trajectories,

and the directions of propagation differ across behavioral

states, such as sleep and wakefulness [48,49]. The global

activity propagation is largely unidirectional within con-

ventional resting-state networks, which may therefore

correspond to points along global spatiotemporal trajec-

tories. In rodents, recordings during anesthesia reveal

similar large, globally propagating waves, at multiple

timescales [37�,50,51]. As is the case in human slow-wave

sleep [52], under some conditions these waves are

observed to primarily travel anterior to posterior

(Figure 3b, upper panels). Moreover, different sets of

cortical areas, sharing high functional connectivity within

each set, are coactivated at different moments during the

propagating global waves, indicating that spatial informa-

tion contained in functional-connectivity networks is

embedded in the phase of the global waves (Figure 3b,

lower panels) [37�]. The extent to which global spontane-

ous dynamics in the cortex of awake, un-anesthetized

rodents can be described as waves [50,51] versus inde-

pendent activation of patterns [43�,38] remains unclear.

Methods to describe and quantify spatiotemporally

extended patterns such as waves when they propagate

not just in one consistent direction, but through the same

medium in multiple directions [53], will be valuable for

better understanding the large-scale patterns observable

on the global scale.

Interactions between local and global
dynamics
Local and global neural dynamics co-exist within the

same cortical networks and may interact across scales.

Recent studies have begun to document such interac-

tions. Understanding the relationship between activity

across local and global scales may clarify the neural

mechanisms of behavior, both goal-directed and sponta-

neous. For example, local one-dimensional dynamics

within single cortical columns (Figure 2d) are modulated

by allocation of spatial attention, the impact of which is

confined to local regions within cortical maps [25��].
However, they are also modulated by changes of arousal
www.sciencedirect.com
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Figure 3

Current Opinion in Neurobiology

Characteristics of global cortical activity in mice. (a) Spontaneous activity in the mouse cortex during quiet wakefulness recorded with wide-field

VSD imaging (adapted from Ref. [34]). Observed activity is predominantly bilaterally synchronous. (b) Activity in anesthetized mouse cortex

recorded with wide-field calcium imaging (adapted from Ref. [37�]), revealing globally propagating slow waves, similar to those in humans. The

average of many detected ‘Global Brain Activity’ events (upper row). Individual moments in this stereotyped wave resemble (arrows) the overall

seed pixel correlation maps for different seed pixel locations (lower row). (c) Activity related to movement of the mouse’s face or body dominates

global dynamics, accounting for much more unique explained variance in wide-field calcium images than factors related to goal-directed behavior,

over all cortical areas measured (adapted from Ref. [41�]). Colormap represents the cross-validated unique variance explained by each group of

predictors (those related to the task, or those related to other movements). (d) Measurements of individual neurons with simultaneous wide-field

calcium imaging allows linking local and global dynamics. Each map represents a seed neuron correlation map: the correlation between spiking

activity of an individual neuron recorded electrophysiologically (at the location of the red circle) and calcium fluorescence across cortex. These

data reveal that individual neurons have distinct patterns, and that these correlations can vary strongly with behavioral state, from quiescence to

locomotion (adapted from Ref. [44��]). (e) For orientation, a map of the left hemisphere of the mouse brain, viewed from above. The outlines of

these cortical areas are superimposed in gray over the left-most image of each preceding panel (superpositions done manually and approximately,

for general guidance). Abbreviations: OLF, olfactory bulb; MOs, secondary motor cortex; MOp, primary motor cortex; SS, somatosensory areas;

RSP, retrosplenial cortex; AUD, auditory areas; VIS, visual areas; SC, superior colliculus; IC, inferior colliculus. Atlas data from the Allen Institute

for Brain Science.

www.sciencedirect.com Current Opinion in Neurobiology 2019, 58:181–190
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[25��], which affect neural activity on the brain-wide scale

and may relate to aspects of task performance such as

engagement [54]. Modulation of global dynamics with

arousal is also consistent with arousal-related local modu-

lation of correlated fluctuations [55–58].

Widespread dynamics across cortex do not only reflect

arousal changes, but are also related to behavior. Overt

movements, with or without any goal-directed task, were

recently shown to dominate rodent neural activity on the

local [26��], cortex-wide (Figure 3c) [41�], and brain-

wide scales [26��,59]. These studies recorded neural

activity concurrently with multi-dimensional behavioral

information in mice, including pupil-dilation [55,56],

running [60], and whisking, as well as videos of facial

and body movements. Surprisingly, they found that

signals related to movements dominate neural activity

across the entire cortex, dwarfing task-related variables

and even sensory stimuli [41�,59]. Moreover, in visual

cortex, sensory inputs do not interrupt this ongoing

signal, but add onto it a representation of visual stimuli

in orthogonal dimensions [26��].

Comparably, another study, using wide-field imaging,

found that bilaterally coordinated activity dominates uni-

lateral responses to local visual stimuli and adds to them,

explaining much of the trial-to-trial response variability

[35�]. This work builds on prior studies that examined the

relationship between local ongoing activity and stimulus

driven activity [61,28] by revealing that much of the local

ongoing activity is in fact related to global cortical dynam-

ics. The bilateral component of response variability must

be accounted for when considering the relationship

between neural activity and behavior. A model fit to these

data predicted behavior accurately by taking a difference

between activity in left and right visual cortex, thus

removing the bilateral component, and the model there-

fore predicted that inactivation of visual cortex unilater-

ally should lead to an increase in ‘hallucinations’ —

reports of ipsilateral stimuli not actually present — rather

than ‘blindness’ — failure to report present stimuli [42��].
Strikingly, this prediction was borne out both qualita-

tively and quantitatively with no parameter adjustments.

This result would not have been predictable from an

examination of local visual cortical activity in one hemi-

sphere alone. Together, these results argue that much

local response variability can be accounted for by consid-

ering larger scales of neural activity, both large local

populations and cross-hemispheric activity.

Experimental techniques are now emerging that enable

simultaneous measurements of neural activity on the local

and global scales, and thus can more directly probe their

interactions. Specifically, cellular-resolution two-photon

calcium imaging or electrophysiological recordings of a

local microcircuit have been combined with simultaneous

wide-field calcium imaging of the entire bilateral cortex
Current Opinion in Neurobiology 2019, 58:181–190 
[44��,62��,63,64]. Such multi-scale recordings permit

uncovering how different neurons within a local circuit

participate in the brain-wide dynamics. In particular,

functional connectivity maps between a single neuron

and the entire cortex reveal that neighboring neurons in

one cortical area are frequently coupled with distinct

distal cortical regions (Figure 3d) [62��,44��]. One possi-

bility is that heterogeneity of neurons’ functional

connectivity may be aligned with diversity of their

long-distance axonal projection patterns, which form

multiple information processing streams [65–68]. In addi-

tion, some of the diversity of global correlations is

accounted for by the genetic identity of the neurons

(VIP-expressing interneurons versus non-VIP-expressing

putative pyramidal neurons) [62��], consistent with dif-

ferences of inputs and outputs of these types. However, a

neuron’s functional connectivity depends at least in part

on behavioral state [44��,69] (cf. Figure 2f), and may differ

dramatically depending on the timescale under consid-

eration [70], suggesting that anatomical pathways alone

will not fully explain these features.

Another promising experimental direction is the use of

novel large-scale electrophysiological techniques [71] to

record populations of neurons distributed across the brain

[26��,59]. This approach enables not only linking of local

and global scales, but also incorporation of information

about subcortical activity and dynamics, which are deeply

intertwined with those of cortex [72,73]. With these new

datasets available, computational analyses and models

based on multi-scale measurements of neural dynamics

with cell-type resolution can now begin to address the

sources and mechanisms of local-global interactions.

Computational functions of local and global
dynamics
What computational functions can be served by cortical

dynamics on multiple spatiotemporal scales? Canonical

models of information processing in the brain are oblivi-

ous to dynamics, portraying cortical neurons as static

feature detectors that build increasingly complex repre-

sentations through successive stages of cortical hierarchy

[74–76]. However, state-of-the-art static feedforward

architectures fall behind primates in recognizing

‘challenging’ images that require additional recurrent

processing [77]. Since a shallow recurrent neural network

is equivalent to a very deep feedforward network (e.g.

ResNet) [78], it is possible that the brain’s recurrent

circuitry efficiently implements what artificial systems

achieve by stacking more feedforward layers, whereby

the local dynamics of each layer act as additional nonlin-

ear transformations. In addition, decoders of neural

responses do not generalize across time [77,79], suggest-

ing that the brain’s representation of images may be not

static, but rather encoded in dynamic and transient neural

trajectories. Moreover, static feedforward models are

vulnerable to input perturbations, such as noise [80] or
www.sciencedirect.com
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partial occlusions [81�], to which humans are robust. The

robustness of feedforward architectures can be improved

by augmenting the output layer with recurrent dynamics

[81�], which reinforces the idea that recurrent dynamics

may serve to ‘fill in’ the missing information or apply

priors for resolving ambiguity. One may wonder, why

would the cortex need to resolve ambiguity at the level of

lower sensory areas, rather than just at the highest level?

Perhaps this relates to another key distinction between

the cortex and modern artificial networks: whereas feed-

forward networks are ‘read out’ only at the last stage,

nearly every cortical area — from primary sensory cortices

onwards — projects to thalamus and striatum [82], and a

majority project to the midbrain [83,84]. Thus nearly

every area potentially influences behavior directly, hence

local and global dynamics may be important for correcting

representations at each level.

Models of neural dynamics have been developed to

account for specific computational mechanisms charac-

teristic of frontal and association cortices, such as pattern

completion [85], working memory and decision-making

[86,87], selective attention [88], and executive control

[89], as well as of motor cortex [90]. In these models, task-

relevant computations are usually implemented by a

single local circuit, for example, a recurrent neural net-

work with connection weights optimized to transform a

set of time-dependent inputs into desired outputs [91].

Such models, operating on a single spatial scale, lack the

modular, multi-scale organization of the neocortex. Aug-

menting functional models of neural dynamics with a

hierarchical structure and global dynamic interactions

across hierarchical modules could potentially extend their

cognitive capacity [92]. For example, a hierarchy of

dynamical modules could represent a hierarchy of com-

peting behavioral goals, and global dynamic interactions

among the modules could resolve lower-level goals in

service of high-level ones [93]. Parts of a hierarchical

network could also engage in mental simulations of future

actions and outcomes [94] or other metacognitive pro-

cesses underlying flexible intelligent behavior. Another

fascinating idea is that ongoing, spontaneous dynamics

during slow-wave sleep may play a protective role against

catastrophic forgetting (overwriting old memories with

new ones) and enable brain networks to undergo contin-

ual learning [95], or to enhance learning from limited

experience [96], both of which remain a challenge for

artificial systems.

Taken together, with few exceptions, the existing hier-

archical models of cortical processing lack dynamics,

while the existing dynamical models lack the modular

and hierarchical organization across spatial scales. Com-

bining these computational elements in a unified archi-

tecture could lead to more powerful models that closer

match the brain’s cognitive capacities. Mechanistic and

descriptive models of multi-scale neural dynamics should
www.sciencedirect.com 
be developed to provide links with neurophysiological

data and to reveal computational functions of the local

and global dynamics in the brain. At the same time,

normative models should be developed to predict what

types of local and global dynamics could support efficient

encoding of sensory stimuli, behavioral states and cogni-

tive operations.

Conclusions
New experimental technologies continually push the

boundaries for observing cortical activity across multiple

spatial and temporal scales. Large-scale cortical record-

ings reveal massive spontaneous neural activity within

local microcircuits and on the global scale. Novel analysis

methods and models indicate that on each scale, neural

activity is spatiotemporal, propagating along trajectories

defined by the local and long-range connectivity structure

and modulated by behavioral states. Interactions between

dynamics on different scales reflect immediate behavioral

goals. Theoretical frameworks now must account for the

multi-scale, spatiotemporal nature of cortical activity to

reveal its computational and behavioral consequences.

Such multi-scale, spatiotemporal theories are beginning

to clarify long-standing debates about dimensionality and

variability of cortical responses, and they stand to unveil

more about the enigmatic functions of brain’s spontane-

ous activity in the future.
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Reid RC, Carandini M, Zeng H: Transgenic mice for
intersectional targeting of neural sensors and effectors with
high specificity and performance. Neuron 2015, 85:942-958.

37.
�

Matsui T, Murakami T, Ohki K: Transient neuronal coactivations
embedded in globally propagating waves underlie resting-
state functional connectivity. Proc Natl Acad Sci U S A 2016,
113:6556-6561.

Simultaneous wide-field imaging of calcium and hemoglobin signals
across most of the mouse cortex reveals bilaterally symmetric sponta-
neous waves propagating across the entire neocortex, under anesthesia.
Cortical areas sharing high functional connectivity are co-activated at
different times during the propagated global waves.

38. Ma Y, Shaik MA, Kozberg MG, Kim SH, Portes JP, Timerman D,
Hillman EMC: Resting-state hemodynamics are
spatiotemporally coupled to synchronized and symmetric
neural activity in excitatory neurons. Proc Natl Acad Sci U S A
2016, 113:E8463-E8471.

39. Allen WE, Kauvar IV, Chen MZ, Richman EB, Yang SJ, Chan K,
Gradinaru V, Deverman BE, Luo L, Deisseroth K: Global
www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0035
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0035
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0035
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0040
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0040
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0040
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0045
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0045
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0045
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0050
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0050
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0050
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0055
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0055
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0055
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0060
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0060
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0060
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0060
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0065
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0065
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0065
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0070
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0070
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0075
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0075
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0080
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0080
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0085
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0085
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0090
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0090
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0095
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0095
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0100
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0100
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0100
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0105
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0105
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0105
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0105
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0110
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0110
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0110
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0115
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0115
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0115
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0120
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0120
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0120
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0120
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0125
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0125
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0125
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0130
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0130
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0130
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0135
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0135
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0135
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0135
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0140
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0140
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0140
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0145
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0145
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0145
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0150
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0150
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0150
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0150
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0155
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0155
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0155
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0155
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0160
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0160
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0160
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0160
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0165
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0165
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0165
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0165
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0165
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0170
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0170
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0170
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0170
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0170
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0175
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0175
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0175
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0180
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0180
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0180
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0180
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0180
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0180
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0180
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0185
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0185
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0185
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0185
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0190
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0190
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0190
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0190
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0190
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0195
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0195


Large-scale cortical dynamics Engel and Steinmetz 189
representations of goal-directed behavior in distinct cell types
of mouse neocortex. Neuron 2017, 94 891–907.e6.

40. Makino H, Ren C, Liu H, Kim AN, Kondapaneni N, Liu X, Kuzum D,
Komiyama T: Transformation of cortex-wide emergent
properties during motor learning. Neuron 2017, 94 880–890.e8.

41.
�

Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK:
Single-trial neural dynamics are dominated by richly varied
movements. bioRxiv 2019:308288.

Wide-field calcium imaging of the mouse cortex during decision-making
shows that activity related to ongoing task-unrelated behavior dominates
across the entire cortex, dwarfing representations of task-related vari-
ables and sensory stimuli. Multi-dimensional representation of sponta-
neous movements and behavioral states predicts large portion of neural
responses across the cortex.

42.
��

Zatka-Haas P, Steinmetz NA, Carandini M, Harris KD: Distinct
contributions of mouse cortical areas to visual discrimination.
bioRxiv 2019:501627.

This study employed a combination of wide-field calcium imaging and
systematic cortex-wide optogenetic manipulations to build and validate a
model of visually guided behavior accounting for global cortical dynamics.
The model incorporated measured activity from left and right visual and
frontal cortex, predicted behavior on individual trials, and predicted the
effects of inactivating these regions with no further parameter adjustments.
Accounting for global dynamics therefore enabled a clear determination of
the relative roles of each brain region in visually guided behavior.

43.
�

Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R,
McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH:
Spontaneous cortical activity alternates between motifs
defined by regional axonal projections. Nat Neurosci 2013,
16:1426-1435.

Wide-field VSD imaging of the mouse cortex reveals multiple patterns of
hemisphere-wide motifs in spontaneous activity. Similar activity motifs
are evoked with sensory stimulation or direct cortical activation by
optogenetics. Maps of intracortical monosynaptic structural connections
predict hemisphere-wide patterns of spontaneous and sensory-evoked
depolarization.

44.
��

Clancy KB, Orsolic I, Mrsic-Flogel TD: Locomotion-dependent
remapping of distributed cortical networks. Nat Neurosci 2019,
22(5):778-786.

Pairing electrophysiology with wide-field calcium imaging enables simul-
taneous cellular-resolution recording of a local microcircuit along with
whole-cortex activity measurement in awake, behaving mice. Individual
neurons can have idiosyncratic cortical correlation maps, and these maps
frequently differ to some extent between quiescent and locomoting
behavioral conditions.

45. Ito J, Nikolaev AR, Leeuwen Cv: Spatial and temporal structure
of phase synchronization of spontaneous alpha EEG activity.
Biol Cybern 2004, 92:54-60.

46. Ito J, Nikolaev AR, van Leeuwen C: Dynamics of spontaneous
transitions between global brain states. Hum Brain Mapp 2007,
28:904-913.

47.
�

Mitra A, Snyder AZ, Blazey T, Raichle ME: Lag threads organize
the brain’s intrinsic activity. Proc Natl Acad Sci U S A 2015, 112:
E2235-E2244.

Resting-state human fMRI fluctuations comprise multiple, highly repro-
ducible, temporal sequences of propagated activity. This propagated
activity is largely unidirectional within conventionally understood resting-
state networks. Resting-state networks naturally emerge as a conse-
quence of shared patterns of propagation.

48. Mitra A, Snyder AZ, Tagliazucchi E, Laufs H, Raichle ME:
Propagated infra-slow intrinsic brain activity reorganizes
across wake and slow wave sleep. Elife 2015, 4.

49. Mitra A, Snyder AZ, Hacker CD, Pahwa M, Tagliazucchi E, Laufs H,
Leuthardt EC, Raichle ME: Human cortical–hippocampal
dialogue in wake and slow-wave sleep. Proc Natl Acad Sci U S A
2016, 113:E6868-E6876.

50. Mitra A, Kraft A, Wright P, Acland B, Snyder AZ, Rosenthal Z,
Czerniewski L, Bauer A, Snyder L, Culver J, Lee JM, Raichle ME:
Spontaneous infra-slow brain activity has unique spatiotemporal
dynamics and laminar structure. Neuron 2018, 98 297–305.e6.
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95. González OC, Sokolov Y, Krishnan GP, Bazhenov M: Can sleep
protect memories from catastrophic forgetting? BioRxiv
2019:569038.

96. Caze R, Khamassi M, Aubin L, Girard B: Hippocampal replays
under the scrutiny of reinforcement learning models.
J Neurophysiol 2018, 120:2877-2896.
www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0355
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0355
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0355
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0360
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0360
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0360
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0365
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0365
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0365
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0370
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0370
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0375
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0375
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0380
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0380
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0380
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0385
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0385
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0385
https://arxiv.org/abs/1604.03640v1
https://arxiv.org/abs/1604.03640v1
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0395
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0395
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0395
https://arxiv.org/abs/1312.6199v4
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0405
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0405
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0405
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0405
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0410
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0410
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0410
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0410
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0410
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0410
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0410
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0415
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0415
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0415
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0420
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0420
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0420
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0420
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0425
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0425
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0425
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0430
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0430
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0435
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0435
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0435
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0440
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0440
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0440
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0445
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0445
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0445
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0450
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0450
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0450
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0455
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0455
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0460
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0460
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0460
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0465
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0465
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0465
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0470
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0470
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0470
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0475
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0475
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0475
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0480
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0480
http://refhub.elsevier.com/S0959-4388(19)30038-8/sbref0480

	New perspectives on dimensionality and variability from large-scale cortical dynamics
	Introduction
	Dynamics on the local scale
	Dynamics on the global scale
	Interactions between local and global dynamics
	Computational functions of local and global dynamics
	Conclusions
	Conflict of interest statement
	References and recommended reading
	Acknowledgements


